

Международный форум АТОМЭКСПО 2010 • Москва, 7-10 июня 2010 г.

Облик АЭС с легководными энергетическими реакторами следующего поколения

Ближайшая целевая задача — *АЭС-2006 М* (он же АЭС-2010, он же АЭС ВВЭР-ТОИ)

В этом исполнении следует завершить объявленную программу строительства АЭС до 2020 года.

Основные направления оптимизации АЭС-2006

Основные технико-экономические цели АЭС-2010

- 1. Коэффициент готовности не менее 93%.
- 2. Расход электроэнергии на собственные нужды не выше 6,4%.
- 3. КПД (брутто) 37,4%.
- 4. Защитная оболочка должна быть рассчитана на падение самолета 20 т (опция 400 т).
- 5. Занимаемая площадь для двухблочной АЭС, включая оборотные системы охлаждающей воды не более 300 м²/МВт.
- 6. Строительные объемы зданий и сооружений двухблочной АЭС не более 500 м³/МВт.
- 7. Срок сооружения от первого бетона до энергопуска не более 45 месяцев.

Направления оптимизации реакторного отделения

- 1. Повышение тепловой мощности реактора до 3300-3400 МВт (т) на базе снятия консерватизма.
- 2. Модернизация парогенератора (улучшение сепарационных характеристик).
- 3. Сокращение органов регулирования СУЗ по результатам уже проведенных работ.
- 4. Полное исключение циркуляционных маслосистем из реакторного отделения, внедрение новых ГЦН (разработка практически завершена).
- 5. Внедрение новой корпусной стали.

Общеблочные модернизации

- 1. Повышение среднегодового термического КПД энергоблока до 37,4% за счет оптимизации термодинамического цикла паротурбинной установки.
- 2. Внедрение новой линейки теплообменного оборудования коллекторно-ширмового типа (ПНД, ПВД, СПП).
- 3. Переход на бездеаэраторную схему второго контура.
- 4. Разработка (или применение) тихоходной турбины с генератором до 1300-1400 МВт (э).
- 5. Повышение маневренных характеристик энергоблока за счет внедрения тепловых аккумуляторов, участие энергоблока в первичном, вторичном и суточном регулировании.

Общеблочные модернизации

- 6. Отказ от блочных обессоливающих установок и переход на БОУ малой производительности.
- 7. Утилизация сбросного низкотемпературного тепла для нужд теплофикации (внедрение тепловых насосов).
- 8. Оптимизация структуры водопитательной установки 2-го контура, включая внедрение гидромуфт на электропитательных насосах, турбоприводов ПН.
- 9. Оптимизация алгоритмов управления энергоблока
- 10. Оптимизация номенклатуры и характеристик систем безопасности (опционы по системам безопасности по требованию заказчика).

Среднесрочная и более отдаленная перспектива ориентируются на новые цели, которые определяют задачи как эволюционного, так и инновационного развития технологии ВВЭР

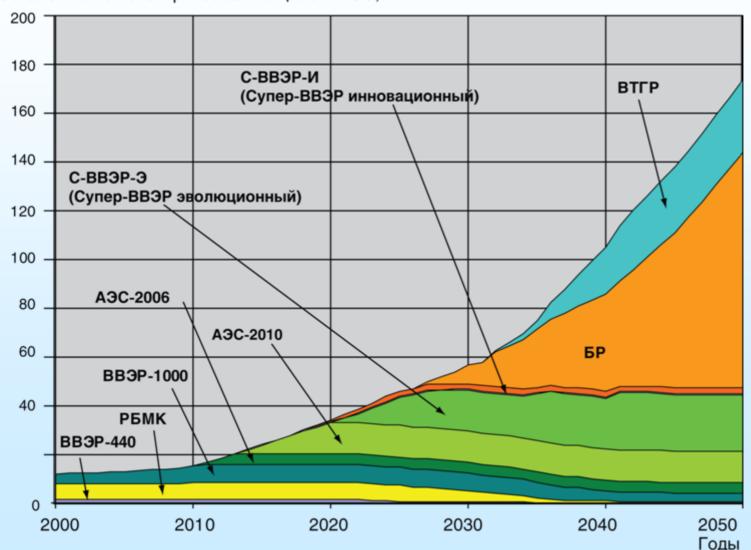
<u>Центральная задача</u>

формирование оптимальной структуры всего ядерного топливного цикла

- создание замкнутого топливного цикла;
- инновационное развитие реакторов деления;
 - создание эффективных бридеров на быстрых нейтронах;
 - повышение эффективности топливоиспользования в реакторах на тепловых нейтронах.

Приоритетное место корпусных легководных реакторов — носителей традиционной технологии и большого опыта

Основные цели:


- более эффективное использование урана;
- снижение инвестиционных рисков;
- повышение термодинамической эффективности.

Рассмотренные направления инновационного развития

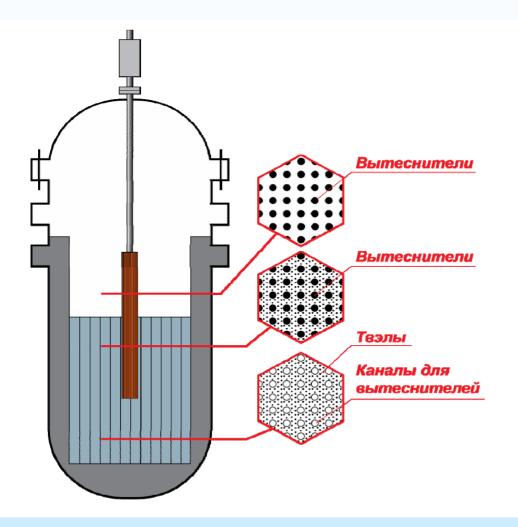
- Охлаждение водой докритических параметров с возможностью регулирования спектра нейтронов.
- Использование технологии корпусного реактора, охлаждаемого кипящей водой докритических параметров.
- Использование воды сверхкритического давления в прямоточном одноконтурном исполнении.
- Использование воды сверхкритического давления в двухконтурной реакторной установке.
- Пароводяное охлаждение в докритической области давления реактора с быстрым спектром нейтронов.
- Паровое охлаждение в закритической области давления реактора с быстрым спектром нейтронов.

Предполагаемая структура атомной энергетики России на период до 2050 г.

Установленная электрическая мощность АЭС, ГВт

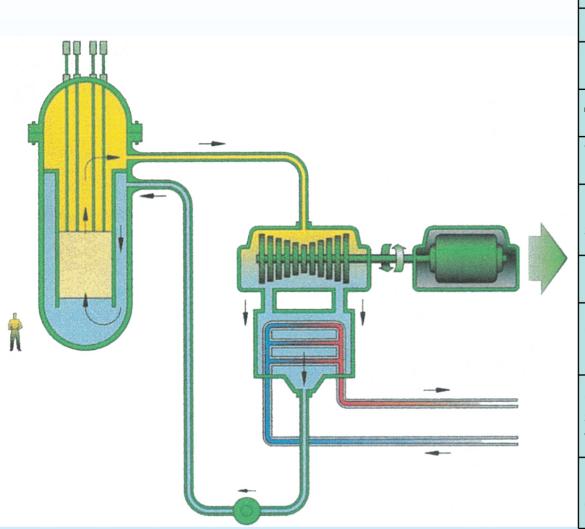
Исходное условие при рассмотрении предложений –

возможность практической реализации в период 2020-2025 годы

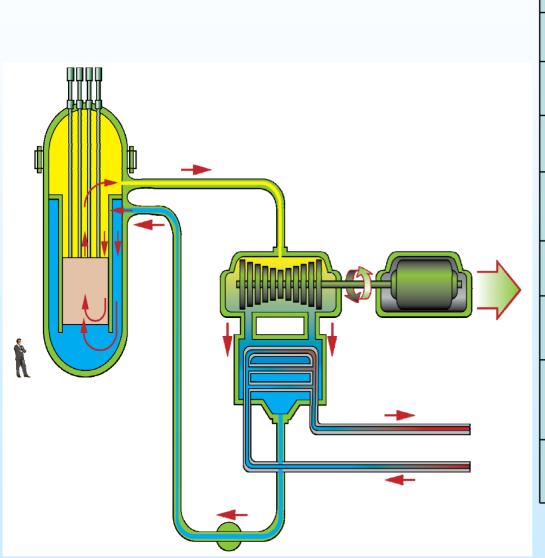

Улучшенный ВВЭР для работы в замкнутом топливном цикле

- Расход природного урана в открытом цикле 130-135 т/ГВт(э) с КВ-0,8-0,85.
- Спектральное регулирование.
- Минимизация паразитного поглощения нейтронов.
- Оптимизация глубины выгорания топлива.
- Повышение термического КПД путем оптимизации конструкции парогенератора и повышения параметров пара.
- Обеспечение широких эксплуатационных возможностей (маневрирование, длительность кампании до 24 месяцев, КИУМ более 90%).
- Уменьшение числа петель РУ, создание стандартной петли 600 МВт(э).
- Индустриальное производство модулей энергоблока, сокращение времени сооружения до 3,5-4 лет.
- Свободное размещение энергоблоков по условиям безопасности.
- Внедрение модернизаций, не реализованных в АЭС-2010.

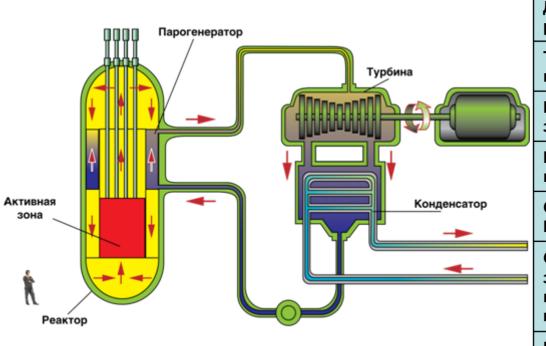
Двухпетлевой ВВЭР-1200



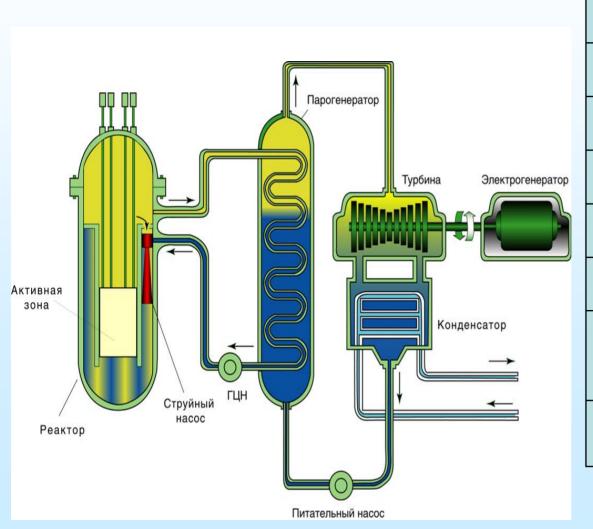
Конструктивная схема реактора с регулированием спектра нейтронов подвижными вытеснителями


Мощность тепл. /Эл, МВт	3500/1300	
кпд аэс, %	33-34	
Компоновка, кол-во контуров	Петлевая 2 контура	
Давление на входе/выходе реактора, МПа	16.2/15.9	
Температура на входе/выходе реактора, °C	287/328,7	
Высота/диаметр активной зоны (+экраны), м	4,57/3,4	
Размеры корпуса высота/диаметр, м	22/ 4. 5	
Стадия разработки проекта РУ	тэи	
Срок, требуемый для завершения НИОКР и выпуска технического проекта РУ, лет	10	
Необходимость сооружения опытной установки	-	

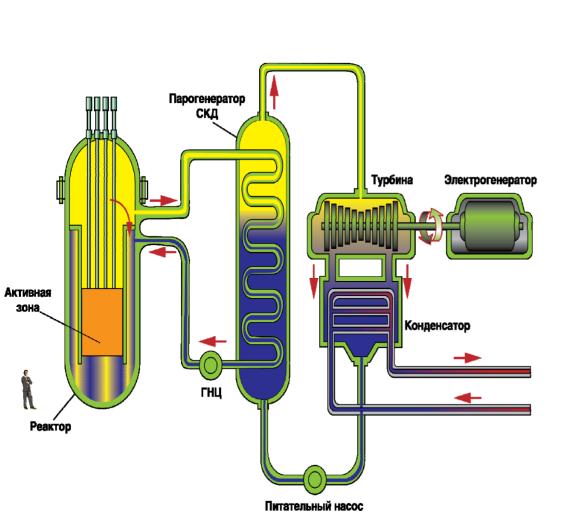
Одноконтурный водо-водяной кипящий реактор с жестким спектром нейтронов и высоким воспроизводством ядерного топлива


	Мощность тепл. /Эл, МВт	3000/ 1035		
	кпд аэс, %	33-34		
	Компоновка, кол-во контуров	1-контур		
	Давление на входе/выходе реактора, МПа	8,0/7,3		
	Температура на входе/выходе реактора, °С	287/288,7		
	Высота/диаметр активной зоны (+экраны), м	2,4(+1)/ 4.14(+0.43)		
	Размеры корпуса высота/диаметр, м	21/5.8		
	Стадия разработки проекта РУ	Концепт. проект		
	Срок, требуемый для завершения НИОКР и выпуска технического проекта РУ, лет	10		
	Необходимость сооружения опытной установки	+		

Одноконтурный ВВЭР-СКД с двухзаходной активной зоной


Мощность тепл. /Эл, МВт	3830/ 1700	
кпд аэс, %	44	
Компоновка, кол-во контуров	Петлевая 1 контур	
Давление на входе/выходе реактора, МПа	25/24	
Температура на входе/выходе реактора, °C	290/540	
Высота/диаметр активной зоны (+экраны), м	3.76(+0.5)/ 3,37(+0,5)	
Размеры корпуса высота/диаметр/толщина, м	15,0/4,8/0,335	
Стадия разработки проекта РУ	Концепт. проект	
Срок, требуемый для завершения НИОКР и выпуска технического проекта РУ, лет *	15	
Необходимость сооружения опытной установки	+	

Двухконтурный интегральный ВВЭР-СКДИ с одноходовой активной зоной и естественной циркуляцией теплоносителя


Мощность тепл. /Эл, МВт	1635/670		
КПД АЭС, %	41		
Компоновка, кол-во контуров	Интегральный 2 контура, в 1-м контуре естеств. циркуляция		
Давление на входе/выходе реактора, МПа	23.6		
Температура на входе/выходе реактора, °C	375/395		
Высота/диаметр активной зоны (+экраны), м	4,2/2,6		
Размеры корпуса высота/диаметр, м	23,5/4,96		
Стадия разработки проекта РУ	Концепт. проект		
Срок, требуемый для завершения НИОКР и выпуска технического проекта РУ, лет	15		
Необходимость сооружения опытной установки	+		

Двухконтурный реактор на быстрых нейтронах, охлаждаемый пароводяной смесью (ПВЭР)

Мощность тепл. /Эл, МВт	1750/650	
кпд аэс, %	37,1	
Компоновка, кол-во контуров	Петлевая 2 контура	
Давление на входе/выходе реактора, МПа	16.3/16.0	
Температура на входе/выходе реактора, °C	347/368	
Высота/диаметр активной зоны (+экраны), м	1.5(+0.5)/ 3(+0.2)	
Размеры корпуса высота/диаметр, м	10.9/4.25	
Стадия разработки проекта РУ	Концепт. Проект	
Срок, требуемый для завершения НИОКР и выпуска технического проекта РУ, лет	10	
Необходимость сооружения опытной установки	+	

Двухконтурный быстрый реактор с паровым теплоносителем сверхкритического давления (ПСКД)

Мощность тепл. /Эл, МВт	1470/ 590		
КПД АЭС, %	40.2		
Компоновка, кол-во контуров	Петлевая 2 контура		
Давление на входе/выходе реактора, МПа	24.5/24.2		
Температура на входе/выходе реактора, °C	388/500		
Высота/диаметр активной зоны (+экраны), м	1.5(+0.5)/ 3(+0.2)		
Размеры корпуса высота/диаметр, м	10.5/4.55		
Стадия разработки проекта РУ	Концепт. проект		
Срок, требуемый для завершения НИОКР и выпуска технического проекта РУ, лет	15		
Необходимость сооружения опытной установки	+		

Состояние разработки, планируемые сроки и этапы реализации

Название опции реактора	BBЭP- Э	ПВЭР-650	ВВЭР- СКДИ	ПСКД-600	ВВЭР – СКД	ВК-М
Стадия разработки проекта РУ	ТЭИ	Концеп- туальный проект	Концеп- туальный проект	Концеп- туальный проект	Концеп- туальный проект	Концеп- туальный проект
Срок, требуемый для завершения НИОКР и выпуска технического проекта РУ, лет	10	10	15	15	15	10
Необходимость сооружения опытной установки	-	-	+	+	+	+
Возможный срок пуска головного энергоблока, год	2020	2025	2035	2035	2035	2025
Возможный срок начала массового	2025	2030	2040	2040	2040	2030

внедрения, год

Оценка предложений

- Перспектива использования опыта BWR (?)
- Переход на «быстрый» спектр нейтронов сфера выбора оптимального варианта бридера.
- Переход на сверхкритическое давление воды самостоятельное перспективное направление.

Предлагаемые направления разработки СУПЕР-ВВЭР

Предлагается сосредоточиться на двух направлениях исследований и разработок:

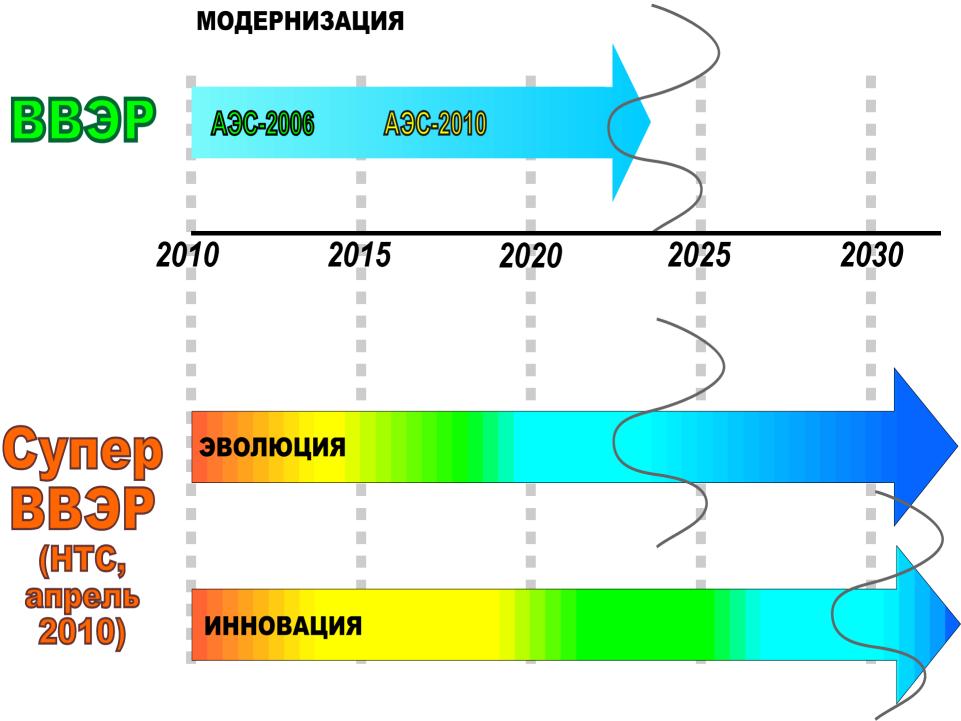
- направление эволюционного развития с модернизацией и совершенствованием традиционной технологии ВВЭР;
- направление инновационного развития с переходом на теплоотвод водой сверхкритических параметров.

Этапы создания эволюционного СУПЕР-ВВЭР

- 2009-2011 гг. Технические предложения по проекту инновационной активной зоны и формирование программы НИОКР для АЭС с эволюционным вариантом СУПЕР-ВВЭР.
- 2011-2015 гг. Выполнение предпроектных и базовых НИОКР для АЭС с эволюционным вариантом СУПЕР-ВВЭР (материалы, коды, базы данных, бенчмарки, стендовая база).
- 2012-2016 гг. Проектирование АЭС с эволюционным вариантом СУПЕР-ВВЭР (концептуальный проект, техническое предложение, технический проект, ТЭО, РД).
- **2016-2021 гг.** Сооружение головной АЭС с эволюционным вариантом СУПЕР-ВВЭР.

Этапы создания инновационного СУПЕР-ВВЭР

2009-2011 гг. Изучение обобщенных базовых проблем ВВЭР-СКД нового поколения, технические предложения по АППУ с инновационной РУ СУПЕР-ВВЭР, формирование требований и программы НИОКР для АЭС с инновационным вариантом СУПЕР-ВВЭР; **2012-2019 гг.** Выполнение предпроектных и базовых НИОКР для АЭС с инновационным вариантом СУПЕР-ВВЭР (материалы, коды, базы данных, бенчмарки, стендовая база, экспериментальные исследования); 2017-2021 гг. Проектирование АЭС с инновационным вариантом СУПЕР-ВВЭР (концептуальный проект, техническое предложение, технический проект, ТЭО, РД); Сооружение головной АЭС с инновационным 2022-2026 гг. вариантом СУПЕР-ВВЭР.


Основные направления НИОКР

- Нейтронно-физические расчеты и эксперименты.
- Тепло-гидравлические расчеты и эксперименты.
- Материаловедческие проблемы в комплексе.
- Динамика процессов в ЯЭУ и анализ устойчивости.
- Водоподготовка.
- Новые технические решения, масштабные эксперименты.

Основное содержание работ на 2-3 года

Выполнение базовых НИОКР, которые позволят:

- для эволюционного направления сформировать технические предложения по проекту активной зоны, реакторной установки и АЭС;
- для инновационного направления обеспечить изучение обобщенных базовых проблем создания ВВЭР-СКД, выбор конструктивно-проектного облика ЯППУ и создание научно-технического задела для перехода к целенаправленному НИОКРу и конкретному проектированию.

