

МЕЖДУНАРОДНЫЙ ФОРУМ «АТОМЭКСПО 2010»

«ЯДЕРНАЯ ЭНЕРГЕТИКА – ДВИГАТЕЛЬ ИННОВАЦИОННОГО РАЗВИТИЯ»

Круглый стол **«Эволюционное и инновационное** развитие легководных корпусных реакторов»

Москва, ЦВЗ «Манеж», 7-9 июня 2010 года

ПУТИ ОПТИМИЗАЦИИ II КОНТУРА ДЛЯ АЭС С ВВЭР

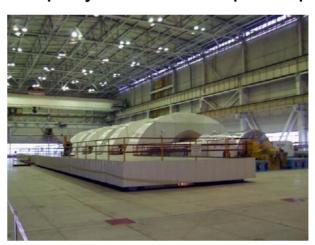
Авдеев А.А. Генеральный директор, д.т.н.

Открытое акционерное общество «Всероссийский научно-исследовательский и проектноконструкторский институт атомного энергетического машиностроения» ОАО «ВНИИАМ»

Коэффициент полезного действия

Реакторный остров

η>98%


Почти все выделившееся в АЗ тепло подается во II контур

Турбинный остров

η≈33÷36%

Только третья часть тепла преобразуется в электроэнергию

Центр тяжести технических проблем на сегодняшний день – в машзале

Оценка экономики

На сколько дороже может быть турбоустановка с увеличенным на 1% КПД?

Блок 1200 МВт; КПД
$$\eta_9$$
 = 36% η_9 = 37% Дополнительная выработка 33,3 Мвт

Капитальные затраты на выработку этой мощности

Неучтены «мелочи»: экономия топлива, удельные эксплуатационные расходы и т.д.

Справка: стоимость турбины 1000 МВт (Харьков) – около 80 млн. € стоимость турбины 1200 МВт (СПб) — около 100 млн. €

За турбину с увеличенным на 1% КПД выгодно заплатить в два раза дороже

КПД турбоустановки определяется всей наборкой оборудования машзала

Параметры турбоустановок

ТЭС	A9C-2006	Эволюционный реактор	Инновационный реактор				
Давление и температура острого пара							
$P_0 = 25 \text{ M}\Pi a$ $T_0 = 560 ^{\circ}\text{C}$	$P_0 = 6.8 \text{ M}\Pi a$ $T_0 = 284 ^{\circ}\text{C}$	$P_0 \approx 7.8 \text{ M}\Pi a$ $T_0 = 293 \text{ °C}$	$P_0 = 22 \text{ M}\Pi a$ $T_0 = 560 ^{\circ}\text{C}$				
Основные технические решения							
Двойной промперегрев до 560 °C.	Внешняя сепарация и двухступенчатый перегрев.	Двойная внешняя сепарация и двухступенчатый перегрев. Петлевой ЦВСД . ПГ с выделенным экономайзерным участком.	?				

- Особенности: 1. Рост влажности на 1% снижает внутренний относительный КПД η_{oi} на 0,85%.
 - 2. Термодинамический КПД максимален при $P_0 \approx 13 \div 15$ МПа.
 - 3. Максимальная теплоотдача при кипении при давлении $P_0 \sim 7$

МПа.

Переход с P_0 ≈7 МПа к P_0 ≈8 МПа увеличивает η_e на 0,7÷0,8%

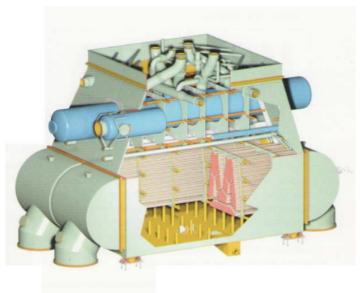
Организации, определяющие техническую политику по машзалу

- 1. Турбостроители турбина + конденсатор
- 2. Энергомашиностроители теплообменное оборудование система регенерации
- 3. Проектные организации компоновка оборудования машзала
- 4. Эксплуатирующие организации опыт коммерческого использования оборудования

В отрасли нет организации – главного конструктора машзала

Влияние параметров турбоагрегата К-1000-60/1500 на недовыработку электроэнергии

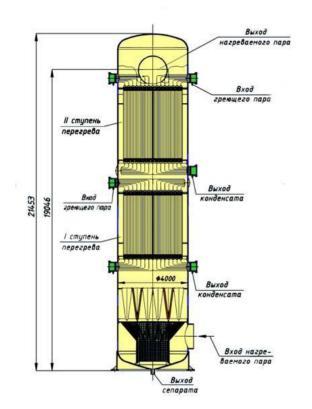
№ π/ π	Наименование параметра	Номинальное (расчетное) значение	Отклонение	Потеря мощности, МВт
1.	Степень сухости свежего пара, %	99,5	-0,5	-3,5
2.	Давление отработавшего пара кгс/см², (кПа)	0,05 (5,0)	+0,01 (1,0)	-11,5
3.	Потери давления в паровпускных органах (СРК), %	3÷4	+1,0	-1,5÷-2,0
4.	Потери давления в тракте промперегрева (СПП), %	7,0	+1,0	-2,0
5.	Недогрев пара, в І-ой и ІІ-ой ступенях СПП, °С	~25,0	+5,0	-0,5÷-1,0
6.	Конечная температура питательной воды, °С	220,0	-5,0	-3,0
			Итого:	23 МВт



Испытания турбоагрегатов энергоблоков АЭС

АЭС	Турб	Год проведения		
N№ энергоблока	Тип	Завод- изготовитель	испытания, исполнитель	
ЛАЭС, блок № 1	K-500-60/3000	Турбоатом	1976 г.; ОРГРЭС, Уральское отделение	
ЧАЭС, блок № 1	K-500-60/3000	Турбоатом	1980 г.; ОРГРЭС, Южное отделение	
Калининская АЭС, блок № 1	K-1000-60/1500	Турбоатом	1985 г.; ОРГРЭС, Москва	
Калининская АЭС, блок № 2	K-1000-60/1500	Турбоатом	1986 г.; ОРГРЭС, Москва	

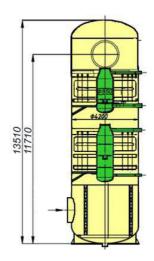
Турбина К-1000-60/1500-2 (Турбоатом, с подвальными конденсаторами) Балаковская АЭС (блоки № 1÷4), Ростовская АЭС (блоки № 1, 2). <u>Ни на одном из энергоблоков тепловые испытания не проводились</u>


Конденсатор

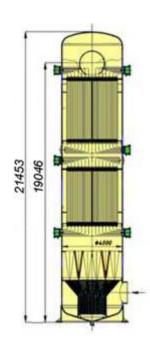
- 1. Наибольшее влияние на выработку блока оказывает конденсатор.
- 2. Переход на градирни.
- 3. Массовая замена конденсаторов в связи с отказом от использования медьсодержащих сплавов.

Необходим проект конденсационной установки, учитывающей как новые технические реалии, так и накопленный опыт эксплуатации

Конструктивные недостатки двухступенчатого сепаратора-пароперегревателя кассетного типа:

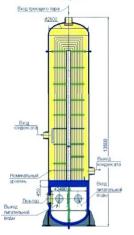

- 1. Низкая интенсивность теплообмена из-за продольного оребрения труб;
- 2. Существуют условия для накопления неконденсирующихся газов в трубах;
- 3. Имеется теплогидравлическая неустойчивость. Пульсации температур достигают 70°С;
- 4.Низкая надёжность из-за теплогидравлической неустойчивости
- 5. При разуплотнении трубки глушится 1 кассета;
- 6. Низкая ремонтопригодность. Особенно для нижнего яруса теплообменных кассет;
- 7. Сложная обвязка СПП трубопроводами;
- 8. Большие габариты СПП и трубопроводы нагреваемого пара расположены выше отметки обслуживания турбины;
- 9. Нетранспортабельный по железной дороге;
- 10.Сборка СПП на монтаже;
- 11.Высокая металлоёмкость и высокая стоимость.

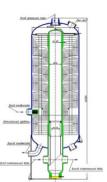
Сравнение двухступенчатых СПП кассетного и коллекторно-ширмового типа (АЭС-2006)

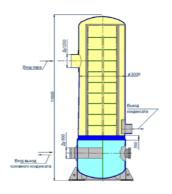

Кассетный

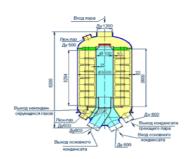
- Масса СПП на блок–208х4=832т:
- 2.Перерасход металла на блок-384т:
- 3. СПП комплектуется 4 вынесенными конденсатосборниками:
- 4. Четыре трубопровода греющего пара, конденсата и уравнительных линий на каждую ступень перегрева;
- 5. Глушится ~1% поверхности при течи 1 трубки;
- 6. Капитальный ремонт трубных пучков требуется;
- 7. Конструктивно невозможно охлаждать конденсат греющего пара;
- 8. Высота СПП 21,45м;
- 9. Трубопроводы занимают площадь ~ равную площади турбины, требуется увеличение турбинного зала на 9м;
- 10. Слив конденсата при температуре насыщения понижает срок службы арматуры и трубопроводов;

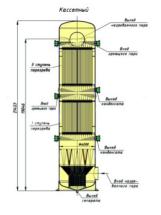
Коллекторно-ширмовый

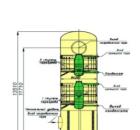

- 1. Macca СПП на блок-112x4=448т;
- 2. Экономия металла на блок-384т:
- 3. Исключаются из комплектной поставки СПП 4 конденсатосборника;
- 4. Один трубопровод греющего пара, конденсата и уравнительных линий на каждую ступень перегрева;
- 5. Глушится 0,02% поверхности при течи 1 трубки;
- 6. Капитальный ремонт трубных пучков не требуется в течение срока службы;
- 7. Увеличение мощности турбоустановки на 0,4МВт за счёт охлаждения конденсата в 1ступени промперегрева;
- 8.Высота СПП 13,51м (в 1,6раза меньше);
- 9. Трубопроводы и СПП размещаются под площадкой обслуживания турбины;
- 10. Повышается надёжность работы арматуры и трубоповодов слива охлаждённого конденсата;
- 11. Уменьшаются массогабаритные характеристики ПВД-Ш №5 (за счёт сброса охлаждённого конденсата в деаэратор)
- 12. Цена СПП на блок меньше на ~ 46%.

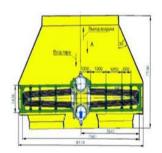


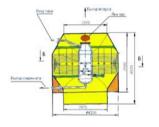

Преимущество теплообменных аппаратов с унифицированной коллекторно-ширмовой трубной системой


Подогреватели высокого давления




Подогреватели низкого давления




Сепаратор- пароперегреватель

Воздушный теплообменник системы пассивного отвода тепла от реактора

Эффект от применения линейки теплообменных аппаратов из расчета на один блок АЭС

Подогреватели высокого давления	Подогреватели низкого давления	Сепаратор- пароперегреватель	Воздушный теплообменник системы пассивного отвода тепла от реактора				
Снижение массы 38%	42%	46%	67%				
Уменьшение трудоемкости в среднем составляет 25%							
Удешевление 47%	45%	46%	60%				

Экономический эффект от внедрения в проекте АЭС 2006 всей линейки теплообменных аппаратов составляет 1.414 млрд. рублей на блок

Выводы:

- 1. Оптимизация машзала необходима. Эффект на новых блоках составляет до 20÷25 МВт. На старых ещё больше.
- 2. Теплообменное оборудование машзала безнадежно устарело. Необходимо срочное внедрение оборудования нового поколения.
- 3. Теплообменное оборудование Западного производства, несмотря на высокий уровень технологии, значительно уступает новейшим отечественным разработкам.
- 4. Для выработки правильной технической стратегии необходима реализация программы массовых испытаний.

Спасибо за

Наши координаты:

125171, Москва, ул. Космонавта Волкова, 6A Телефон: +7 (499)150-83-35; +7 (499)150-83-36

Факс: +7 (499)159-94-74

www.vniiam.ru

ОАО «Всероссийский научно-исследовательский и проектно-конструкторский институт атомного энергетического машиностроения» (ОАО «ВНИИАМ»)